Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2767, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307957

RESUMO

Colorectal cancer (CRC) is one of the most prevalent and deadliest illnesses all around the world. Growing proofs demonstrate that tumor-associated macrophages (TAMs) are of critical importance in CRC pathogenesis, but their mechanisms remain yet unknown. The current research was designed to recognize underlying biomarkers associated with TAMs in CRC. We screened macrophage-related gene modules through WGCNA, selected hub genes utilizing the LASSO algorithm and COX regression, and established a model. External validation was performed by expression analysis using datasets GSE14333, GSE74602, and GSE87211. After validating the bioinformatics results using real-time quantitative reverse transcription PCR, we identified SPP1, C5AR1, MMP3, TIMP1, ADAM8 as potential biomarkers associated with macrophages in CRC.


Assuntos
Neoplasias Colorretais , Genes Reguladores , Humanos , Prognóstico , Macrófagos , Biomarcadores , Neoplasias Colorretais/genética , Biomarcadores Tumorais/genética , Proteínas de Membrana , Proteínas ADAM
2.
MethodsX ; 12: 102481, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38162150

RESUMO

The efficiency of clustered regularly interspaced short palindromic repeats (CRISPR) guide RNA (gRNA) targeting is critical for CRISPR associated protein 9 (Cas9)-dependent genomic modifications. Here, we developed Noodles, an all-in-one system to test the on-target activity of gRNAs easily and efficiently. Single-strand annealing repair mechanism of the split luciferase gene allows a positive selection of gRNAs efficiently driving nuclease activity of Cas9 from Streptococcus pyogenes (SpCas9). Our system can reliably validate in silico-predicted gRNAs before implementing them for in vitro and in vivo applications. Altogether, Noodles might be an asset for researchers and bioengineers, saving their time and efforts, while keeping the screening efficient and sensitive. •All-in-one dual-luciferase system to easily probe on-target activity of gRNAs based on homology-directed repair mechanism.•Easy-to-subclone spCas9-based 2-plasmid system comprising Renilla luciferase for transfection efficiency control.

3.
Aging Cell ; 23(3): e14064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100161

RESUMO

Vitamin A (VA) is a micronutrient essential for the physiology of many organisms, but its role in longevity and age-related diseases remains unclear. In this work, we used Caenorhabditis elegans to study the impact of various bioactive compounds on lifespan. We demonstrate that VA extends lifespan and reduces lipofuscin and fat accumulation while increasing resistance to heat and oxidative stress. This resistance can be attributed to high levels of detoxifying enzymes called glutathione S-transferases, induced by the transcription factor skinhead-1 (SKN-1). Notably, VA upregulated the transcript levels of skn-1 or its mammalian ortholog NRF2 in both C. elegans, human cells, and liver tissues of mice. Moreover, the loss-of-function genetic models demonstrated a critical involvement of the SKN-1 pathway in longevity extension by VA. Our study thus provides novel insights into the molecular mechanism of anti-aging and anti-oxidative effects of VA, suggesting that this micronutrient could be used for the prevention and/or treatment of age-related disorders.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Camundongos , Caenorhabditis elegans/metabolismo , Longevidade/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Vitamina A/farmacologia , Vitamina A/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima , Proteínas de Caenorhabditis elegans/metabolismo , Estresse Oxidativo , Mamíferos/metabolismo , Micronutrientes/metabolismo , Micronutrientes/farmacologia
4.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761985

RESUMO

Animal studies have proven that 1-acetyl-5-phenyl-1H-pyrrol-3-yl acetate (APPA) is a powerful antioxidant as a novel aldose reductase inhibitor independently synthesized by our laboratory; however, there is no current information on APPA's anti-aging mechanism. Therefore, this study examined the impact and mechanism of APPA's anti-aging and anti-oxidation capacity using the Caenorhabditis elegans model. The results demonstrated that APPA increases C. elegans' longevity without affecting the typical metabolism of Escherichia coli OP50 (OP50). APPA also had a non-toxic effect on C. elegans, increased locomotor ability, decreased the levels of reactive oxygen species, lipofuscin, and fat, and increased anti-stress capacity. QRT-PCR analysis further revealed that APPA upregulated the expression of antioxidant genes, including sod-3, gst-4, and hsp-16.2, and the critical downstream transcription factors, daf-16, skn-1, and hsf-1 of the insulin/insulin-like growth factor (IGF) receptor, daf-2. In addition, fat-6 and nhr-80 were upregulated. However, the APPA's life-prolonging effects were absent on the daf-2, daf-16, skn-1, and hsf-1 mutants implying that the APPA's life-prolonging mechanism depends on the insulin/IGF-1 signaling system. The transcriptome sequencing also revealed that the mitochondrial route was also strongly associated with the APPA life extension, consistent with mev-1 and isp-1 mutant life assays. These findings aid in the investigation of APPA's longevity extension mechanism.


Assuntos
Proteínas de Caenorhabditis elegans , Insulinas , Animais , Caenorhabditis elegans/metabolismo , Longevidade , Antioxidantes/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Insulinas/metabolismo , Estresse Oxidativo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
5.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575832

RESUMO

Panax ginseng is a valuable traditional Chinese medicine in Northeast China. Ginsenoside, the active component of ginseng, has not been investigated much for its effects on aging and its underlying mechanism(s) of action. Here, we investigated the effects of total ginsenoside (TG), a mixture of the primary active ginsenosides from Panax ginseng, on the lifespan of Caenorhabditis elegans (C. elegans). We found that TG extended the lifespan of C. elegans and reduced lipofuscin accumulation. Moreover, TG increased the survival of C. elegans in response to heat and oxidative stress via the reduction of ROS. Next, we used RNA-seq to fully define the antiaging mechanism(s) of TG. The KEGG pathway analysis showed that TG can prolong the lifespan and is involved in the longevity regulating pathway. qPCR showed that TG upregulated the expression of nrh-80, daf-12, daf-16, hsf-1 and their downstream genes. TG also reduced the fat accumulation and promoted lipid metabolism. Moreover, TG failed to extend the lifespan of daf-16 and hsf-1 mutants, highlighting their role in the antiaging effects of TG in C. elegans. The four main constitution of TG were then confirmed by HPLC and included ginsenoside Re, Rg1, Rg2 and Rd. Of the ginsenosides, only ginsenoside Rd prolonged the lifespan of C. elegans to levels comparable to TG. These findings provided mechanistic insight into the antiaging effects of ginsenoside in C. elegans.


Assuntos
Ginsenosídeos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Biomarcadores , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma
6.
World J Microbiol Biotechnol ; 36(8): 116, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32661601

RESUMO

Laccases (EC 1.10.3.2) are a class of metallo-oxidases found in a variety of fungi, plants, and bacteria as well as in certain insects. They can oxidize a wide variety of organic compounds and can be widely applied in many fields, especially in the field of biodegradation and detoxification of environmental pollutants. The practical efficacy of laccases depends on their ability to capture the target substance as well as their catalytic activity, which is related to their catalytic center, substrate selectivity, and substrate tolerance. Over the past few decades, many laccases have been identified in plants and fungi. Concurrently, bacterial laccases have received increasing attention because of their high thermostability and high tolerance to organic compounds. The aim of this review is to summarize the role of bacterial laccases in the bioremediation of petroleum hydrocarbons and to outline the correlation between the molecular structure of the mononuclear T1 Cu center of bacterial laccases and their substrate preference.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Lacase/metabolismo , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sequência de Aminoácidos , Fenóis/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...